skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Verdy, Ariane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Southern Ocean is a region of intense air–sea exchange that plays a critical role for ocean circulation, global carbon cycling, and climate. Subsurface chlorophyll‐a maxima, annually recurrent features throughout the Southern Ocean, may increase the energy flux to higher trophic levels and facilitate downward carbon export. It is important that model parameterizations appropriately represent the chlorophyll vertical structure in the Southern Ocean. Using BGC‐Argo chlorophyll profiles and the Biogeochemical Southern Ocean State Estimate (B‐SOSE), we investigate the sensitivity of chlorophyll vertical structure to model parameters. Based on the sensitivity analysis results, we estimate optimized parameters, which efficiently improve the model consistency with observations. We characterize chlorophyll vertical structure in terms of Empirical Orthogonal Functions and define metrics to compare model results and observations in a series of parameter perturbation experiments. We show that chlorophyll magnitudes are likely to respond quasi‐symmetrically to perturbations in the analyzed parameters, while depth and thickness of the subsurface chlorophyll maximum show an asymmetric response. Perturbing the phytoplankton growth tends to generate more symmetric responses than perturbations in the grazing rate. We identify parameters that affect chlorophyll magnitude, subsurface chlorophyll or both and discuss insights into the processes that determine chlorophyll vertical structure in B‐SOSE. We highlight turbulence, differences in phytoplankton traits, and grazing parameterizations as key areas for improvement in models of the Southern Ocean. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract The Southern Ocean is rich in highly dynamic mesoscale eddies and substantially modulates global biogeochemical cycles. However, the overall surface and subsurface effects of eddies on the Southern Ocean biogeochemistry have not been quantified observationally at a large scale. Here, we co‐locate eddies, identified in the Meta3.2DT satellite altimeter‐based product, with biogeochemical Argo floats to determine the effects of eddies on the dissolved inorganic carbon (DIC), nitrate, and dissolved oxygen concentrations in the upper 1,500 m of the ice‐free Southern Ocean, as well as the eddy effects on the carbon fluxes in this region. DIC and nitrate concentrations are lower in anticyclonic eddies (AEs) and increased in cyclonic eddies (CEs), while dissolved oxygen anomalies switch signs above (CEs: positive, AEs: negative) and below the mixed layer (CEs: negative, AEs: positive). We attribute these anomalies primarily to eddy pumping (isopycnal heave), as well as eddy trapping for oxygen. Maximum anomalies in all tracers occur at greater depths in the subduction zone north of the Antarctic Circumpolar Current (ACC) compared to the upwelling region in the ACC, reflecting differences in background vertical structures. Eddy effects on air–sea exchange have significant seasonal variability, with additional outgassing in CEs in fall (physical process) and additional oceanic uptake in AEs and CEs in spring (biological and physical process). Integrated over the Southern Ocean, AEs contribute 0.01 Pg C (7 ) to the Southern Ocean carbon uptake, and CEs offset this by 0.01 Pg C (2 ). These findings underscore the importance of considering eddy impacts in observing networks and climate models. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Global climate change has impacted ocean biogeochemistry and physical dynamics, causing increases in acidity and temperature, among other phenomena. These changes can lead to deleterious effects on marine ecosystems and communities that rely on these ecosystems for their livelihoods. To better quantify these changes, an array of floats fitted with biogeochemical sensors (BGC‐Argo) is being deployed throughout the ocean. This paper presents an algorithm for deriving a deployment strategy that maximizes the information captured by each float. The process involves using a model solution as a proxy for the true ocean state and carrying out an iterative process to identify optimal float deployment locations for constraining the model variance. As an example, we use the algorithm to optimize the array for observing ocean surface dissolved carbon dioxide concentrations (pCO2) in a region of strong air–sea gas exchange currently being targeted for BGC‐Argo float deployment. We conclude that 54% of the pCO2variability in the analysis region could be sampled by an array of 50 Argo floats deployed in specified locations. This implies a relatively coarse average spacing, though we find the optimal spacing is nonuniform, with a denser sampling being required in the eastern equatorial Pacific. We also show that this method could be applied to determine the optimal float deployment along ship tracks, matching the logistics of real float deployment. We envision this software package to be a helpful resource in ocean observational design anywhere in the global oceans. 
    more » « less
  4. Abstract In the tropical Pacific, weak ventilation and intense microbial respiration at depth give rise to a low dissolved oxygen (O2) environment that is thought to be ventilated primarily by the equatorial current system (ECS). The role of mesoscale eddies and vertical mixing as potential pathways of O2supply in this region, however, remains poorly known due to sparse observations and coarse model resolution. Using an eddy resolving simulation of ocean circulation and biogeochemistry, we assess the contribution of these processes to the O2budget balance and find that vertical mixing of O2, which is modulated by the surface wind speed and the vertical shear of the eddying currents, contributes substantially to the replenishment of O2in the upper equatorial Pacific thermocline, complementing the advective supply of O2by the ECS and meridional circulation at depth. These transport processes vary seasonally in conjunction with the wind: mixing of O2into the upper thermocline is strongest during boreal summer and fall when the vertical shear and eddy kinetic energy are intensified. The relationship between eddy activity and the downward mixing of O2arises from the modulation of equatorial turbulence by Tropical Instability Waves via their impacts on the vertical shear. This interaction of processes across scales sustains a local pathway of O2delivery into the equatorial Pacific interior and highlights the need for adequate observations and models of turbulent mixing and mesoscale processes for understanding and predicting the fate of the tropical Pacific O2content in a warmer and more stratified ocean. 
    more » « less
  5. Abstract Measurements of pH and nitrate from the Southern Ocean Carbon and Climate Observations and Modeling array of profiling floats were used to assess the ratios of dissolved inorganic carbon (DIC) and nitrate (NO3) uptake during the spring to summer bloom period throughout the Southern Ocean. Two hundred and forty‐three bloom periods were observed by 115 floats from 30°S to 70°S. Similar calculations were made using the Takahashi surface DIC and nitrate climatology. To separate the effects of atmospheric CO2exchange and mixing from phytoplankton uptake, the ratios of changes in DIC to nitrate of surface waters (ΔDIC/ΔNO3) were computed in the Biogeochemical Southern Ocean State Estimate (B‐SOSE) model. Phytoplankton uptake of DIC and nitrate are fixed in B‐SOSE at the Redfield Ratio (RR; 6.6 mol C/mol N). Deviations in the B‐SOSE ΔDIC/ΔNO3must be due to non‐biological effects of CO2gas exchange and mixing. ΔDIC/ΔNO3values observed by floats and in the Takahashi climatology were corrected for the non‐biological effects using B‐SOSE. The corrected, in situ biological uptake ratio (C:N) occurs at values similar to the RR, with two major exceptions. North of 40°S biological DIC uptake is observed with little or no change in nitrate giving high C:N. In the latitude band at 55°S, the Takahashi data give a low C:N value, while floats are high. This may be due to a change in CO2air‐sea exchange in this region from uptake during the Takahashi reference year of 2005 to outgassing of CO2during the years sampled by floats. 
    more » « less